MAP–Based Framework for Segmentation of MR Brain Images Based on Visual Appearance and Prior Shape
نویسندگان
چکیده
We propose a new MAP-based technique for the unsupervised segmentation of different brain structures (white matter, gray matter, etc.) from T1-weighted MR brain images. In this paper, we follow a procedure like most conventional approaches, in which T1-weighted MR brain images and desired maps of regions (white matter, gray matter, etc.) are modeled by a joint Markov-Gibbs Random Field model (MGRF) of independent image signals and interdependent region labels. However, we specifically focus on the most accurate model identification that can be achieved. The proposed joint MGRF model accounts for the following three descriptors: i) a 1-order visual appearance descriptor (empirical distribution of signal intensity), ii) a 3D probabilistic shape prior, and iii) a 3D spatially invariant 2-order homogeneity descriptor. To better specify the 1-order visual appearance descriptor, each empirical distribution of signals is precisely approximated by a Linear Combination of Discrete Gaussians (LCDG) having both positive and negative components. The 3D probabilistic shape prior is learned using a subset of 3D co-aligned training T1-weighted MR brain images. The 2-order homogeneity descriptor is modeled by a 2-order translation and rotation invariant MGRF of 3D T1-weighted MR brain region labels with analytically estimated potentials. The initial segmentation, based on a 1-order visual appearance and 3D probabilistic shape, is then iteratively refined using a 3D MGRF model with analytically estimated potentials. Experiments on twelve 3D T1-weighted MR brain images confirm the high accuracy of the proposed approach.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملA fast stochastic framework for automatic MR brain images segmentation
This paper introduces a new framework for the segmentation of different brain structures (white matter, gray matter, and cerebrospinal fluid) from 3D MR brain images at different life stages. The proposed segmentation framework is based on a shape prior built using a subset of co-aligned training images that is adapted during the segmentation process based on first- and second-order visual appe...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013